The search functionality is under construction.

Author Search Result

[Author] Yukitoshi SANADA(82hit)

61-80hit(82hit)

  • Phase and Gain Imbalance Compensation in Low-IF Receivers

    Teruji IDE  Takeo FUJII  Mamiko INAMORI  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:1
      Page(s):
    211-223

    In this paper, we present a modified image rejection method that uses imbalance compensation techniques for phase and gain in low-intermediate frequency (IF) software-defined radio (SDR) receivers. In low-IF receivers, the image frequency signal interferes with the desired signal owing to the phase and gain imbalances caused by analog devices. Thus, it is difficult to achieve the required image rejection ratio (IRR) of over 60dB without compensation. To solve this problem, we present modified blind compensation techniques based on digital signal processing using a feedback control loop with a practical computation process. The modified method can reduce the complexity when a hardware logic circuit is used, like an FPGA. The simulation and experimental results verify that the modified method achieves an IRR greater than 50-60dB for both the carrier and the modulated waves.

  • Multipath Diversity through Time Shifted Sampling for Spatially Correlated OFDM-Antenna Array Systems

    Refik Çalar KIZILIRMAK  Yukitoshi SANADA  

     
    PAPER

      Vol:
    E91-A No:11
      Page(s):
    3104-3111

    An essential condition for diversity reception is that the fading distributions between individual received signals of an antenna array are uncorrelated. In this paper, a new technique to improve the performance of transmission with the correlated Rayleigh-fading signals is proposed. In conventional array systems, individual receivers start sampling the received signals at the same time with the same sampling rate. On the other hand, in the proposed scheme, the received signals are again sampled with the same rate, however the sampling points are shifted in each receiver. Numerical results through computer simulation show that with correlated received signals, by applying the proposed technique the correlation can be reduced to a sufficient level for diversity reception.

  • IQ Imbalance Estimation Scheme in the Presence of DC Offset and Frequency Offset in the Frequency Domain

    Mamiko INAMORI  Shuzo TAKAYAMA  Yukitoshi SANADA  

     
    PAPER

      Vol:
    E92-A No:11
      Page(s):
    2688-2696

    Direct conversion receivers in orthogonal frequency division multiplexing (OFDM) systems suffer from direct current (DC) offset, frequency offset, and IQ imbalance. We have proposed an IQ imbalance estimation scheme in the presence of DC offset and frequency offset, which uses preamble signals in the time domain. In this scheme, the DC offset is eliminated by a differential filter. However, the accuracy of IQ imbalance estimation is deteriorated when the frequency offset is small. To overcome this problem, a new IQ imbalance estimation scheme in the frequency domain with the differential filter has been proposed in this paper. The IQ imbalance is estimated with pilot subcarriers. Numerical results obtained through computer simulation show that estimation accuracy and bit error rate (BER) performance can be improved even if the frequency offset is small.

  • Novel CSMA Scheme for DS-UWB Ad-hoc Network with Variable Spreading Factor

    Wataru HORIE  Yukitoshi SANADA  

     
    PAPER

      Vol:
    E87-A No:10
      Page(s):
    2615-2620

    In this paper, a novel carrier-sense multiple-access (CSMA) scheme for UWB ad-hoc network is proposed and evaluated. UWB is a kind of spread spectrum communication and it is possible to detect the distance between the nodes. With this positioning capability of the UWB systems, DS-CDMA (DS-UWB) scheme with variable spreading factor is used. In this paper, a novel CSMA scheme that employs the correlation of the spreading code is proposed.

  • Sampling Point Selection Scheme for Fractional Sampling-OFDM Receivers on Fast Time-Varying Multipath Channels

    Tatsuya KOBAYASHI  Haruki NISHIMURA  Yukitoshi SANADA  

     
    PAPER

      Vol:
    E93-A No:11
      Page(s):
    2122-2129

    Fractional sampling (FS) and Doppler diversity equalization in OFDM receivers can achieve two types of diversity (path diversity and frequency diversity) simultaneously on time-varying multipath channels. However FS with a higher sampling rate requires the large amount of complexity in demodulation. In this paper, a novel sampling point selection (SPS) scheme with MMSE equalization in FS-OFDM receivers is proposed. On fast time-varying multipath channels, the proposed scheme selects the appropriate samples from the fractionally sampled signals. Through the computer simulation, it is demonstrated that with the proposed scheme, both path diversity gain and Doppler diversity gain can increase as compared to a conventional non-SPS scheme.

  • OFDM Interference Suppression for DS/SS Systems Using Complex FIR Filter

    Yuki SHIMIZU  Yukitoshi SANADA  

     
    PAPER-OFDM/CDMA

      Vol:
    E90-A No:11
      Page(s):
    2388-2394

    In this paper, the performance of narrow band interference (NBI) rejection scheme for direct sequence spread spectrum (DS/SS) is analyzed. A 2-tapped complex FIR filter is used for filtering a chip code to suppress NBI. In this system, the spectrum of transmitted signal has a null at an arbitrary frequency. By choosing filter coefficients, the authors place this null at NBI center frequency to mitigate the effect of NBI. In this paper, an OFDM signal is considered as NBI. The performance of this scheme is theoretically analyzed by introducing Queueing model, and validated via simulation.

  • Reliable Data Transmission for Resonant-Type Wireless Power Transfer

    Shinpei NOGUCHI  Mamiko INAMORI  Yukitoshi SANADA  

     
    PAPER-Digital Signal Processing

      Vol:
    E96-A No:1
      Page(s):
    298-303

    Wireless power transfer research has been receiving a great deal of attention in recent years. In resonant-type wireless power transfer, energy is transferred via LC resonant circuits. However, system performance is dependent on the circuit components. To transfer power efficiently and safely, information, such as frequency, required power and element values, need to be transmitted reliably in the system. This paper investigates data communication using orthogonal frequency division multiplexing (OFDM) modulation in resonant-type wireless power transfer systems. The equivalent circuit used in the transmitting and receiving antennas is a band pass filter (BPF) and its bandwidth is evaluated through circuit simulations and experimental measurements. Numerical results obtained through computer simulation show that the bit error rate (BER) performance is affected by the splitting resonant frequency.

  • FOREWORD Open Access

    Yukitoshi SANADA  

     
    FOREWORD

      Vol:
    E101-B No:7
      Page(s):
    1522-1522
  • UE Set Selection for RR Scheduling in Distributed Antenna Transmission with Reinforcement Learning Open Access

    Go OTSURU  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/01/13
      Vol:
    E106-B No:7
      Page(s):
    586-594

    In this paper, user set selection in the allocation sequences of round-robin (RR) scheduling for distributed antenna transmission with block diagonalization (BD) pre-coding is proposed. In prior research, the initial phase selection of user equipment allocation sequences in RR scheduling has been investigated. The performance of the proposed RR scheduling is inferior to that of proportional fair (PF) scheduling under severe intra-cell interference. In this paper, the multi-input multi-output technology with BD pre-coding is applied. Furthermore, the user equipment (UE) sets in the allocation sequences are eliminated with reinforcement learning. After the modification of a RR allocation sequence, no estimated throughput calculation for UE set selection is required. Numerical results obtained through computer simulation show that the maximum selection, one of the criteria for initial phase selection, outperforms the weighted PF scheduling in a restricted realm in terms of the computational complexity, fairness, and throughput.

  • User Scheduling at Base Station Cluster Boundary for Massive MIMO Downlink Transmission

    Masahito YATA  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/03/08
      Vol:
    E106-B No:9
      Page(s):
    837-843

    One of the key technologies for the fifth-generation (5G) mobile communication system is massive multiple-input multiple-output (MIMO) that applies beamforming in order to effectively compensate for large propagation losses in high frequency bands and enable the spatial multiplexing of a large number of signal streams over multiple users. To further improve a system throughput, a coordinated cluster system in which a large number of massive MIMO base stations are deployed in high density has been investigated. The dense deployment greatly improves the system capacity by controlling base stations from a centralized base band unit. However, when clusters are closely located in order to serve densely populated areas, inter-beam interference between adjacent clusters becomes more severe. To suppress the interference to adjacent clusters, only a simple beam switch control scheme at a cluster boundary has been investigated as a conventional scheme. In this paper, the scheduling algorithm for massive MIMO downlink transmission near cluster boundaries, which combines two scheduling algorithms, has been proposed. In the proposed scheme, each base station divides its own cell to multiple areas, switches supporting areas sequentially, and serves users in those areas. The numerical results show that the throughputs improve with a little reduction in a fairness index (FI) when the number of users per resource block is one. The FI reaches the highest when the number of users per cell is equal to the number of divided areas. The proposed scheme reduces computational complexity as compared with those of conventional two schemes.

  • Gradient Descent Direction Random Walk MIMO Detection Using Intermediate Search Point

    Naoki ITO  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/07/24
      Vol:
    E106-B No:11
      Page(s):
    1192-1199

    In this paper, multi-input multi-output (MIMO) signal detection with random walk along a gradient descent direction using an intermediate search point is presented. As a low complexity MIMO signal detection schemes, a gradient descent algorithm with Metropolis-Hastings (MH) methods has been proposed. Random walk along a gradient descent direction speeds up the MH based search using the gradient of a least-squares cost function. However, the gradient vector may be discarded through QAM constellation quantization in some cases. For further performance improvement, this paper proposes an improved search scheme in which the gradient vector is stored for the next search iteration to generate an intermediate search point. The performance of the proposed scheme improves with higher order modulation symbols as compared with that of a conventional scheme. Numerical results obtained through computer simulation show that a bit error rate (BER) performance improves by 5dB at a BER of 10-3 for 64QAM symbols in a 16×16 MIMO system.

  • Gain and Output Optimization Scheme for Block Low-Resolution DACs in Massive MIMO Downlink

    Taichi YAMAKADO  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/07/24
      Vol:
    E106-B No:11
      Page(s):
    1200-1209

    In this paper, a nonlinear quantized precoding scheme for low-resolution digital-analog converters (DACs) in a massive multiple-input multiple-output (MIMO) system is proposed. The nonlinear quantized precoding determines transmit antenna outputs with a transmit symbol and channel state information. In a full-digital massive MIMO system, low-resolution DACs are used to suppress power consumption. Conventional precoding algorithms for low-resolution DACs do not optimize transmit antenna gains individually. Thus, in this paper, a precoding scheme that optimizes individual transmit antenna gains as well as the DAC outputs is proposed. In the proposed scheme, the subarray of massive MIMO antennas is treated virtually as a single antenna element. Numerical results obtained through computer simulation show that the proposed precoding scheme achieves bit error rate performance close to that of the conventional precoding scheme with much smaller antenna gains on a CDL-A channel.

  • Adaptive Mixing Probability Scheme in Mixed Gibbs Sampling MIMO Signal Detection

    Kenshiro CHUMAN  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/09/19
      Vol:
    E106-B No:12
      Page(s):
    1463-1469

    This paper proposes an adaptive mixing probability scheme for mixed Gibbs sampling (MGS) or MGS with maximum ratio combining (MRC) in multiple-input multiple-output (MIMO) demodulation. In the conventional MGS algorithm, the mixing probability is fixed. Thus, if a search point is captured by a local minimum, it takes a larger number of samples to escape. In the proposed scheme, the mixing probability is increased when a candidate transmit symbol vector is captured by a local minimum. Using the adaptive mixing probability, the numbers of candidate transmit symbol vectors searched by demodulation algorithms increase. The proposed scheme in MGS as well as MGS with MRC reduces an error floor level as compared with the conventional scheme. Numerical results obtained through computer simulation show that the bit error rates of the MGS as well as the MGS with MRC reduces by about 1/100 when the number of iterations is 100 in a 64×64 MIMO system.

  • Belief Propagation Detection with MRC Reception and MMSE Pre-Cancellation for Overloaded MIMO

    Yuto SUZUKI  Yukitoshi SANADA  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2023/10/26
      Vol:
    E107-B No:1
      Page(s):
    154-162

    In this paper, belief propagation (BP) multi-input multi-output (MIMO) detection with maximum ratio combining (MRC) and minimum mean square error (MMSE) pre-cancellation is proposed for overload MIMO. The proposed scheme applies MRC before MMSE pre-cancellation. The BP MIMO detection with MMSE pre-cancellation leads to a reduction in diversity gain due to the decreased number of connections between variable nodes and observation nodes in a factor graph. MRC increases the diversity gain and contributes to improve bit error rate (BER) performance. Numerical results obtained through computer simulation show that the BERs of the proposed BP MIMO detection with MRC and MMSE pre-cancellation yields bit error rates (BERs) that are approximately 0.5dB better than those of conventional BP MIMO detection with MMSE pre-cancellation at a BER of 10-3.

  • Performance of Collaborative MIMO Reception with User Grouping Schemes

    Eiku ANDO  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/10/23
      Vol:
    E107-B No:1
      Page(s):
    253-261

    This paper proposes user equipment (UE) grouping schemes and evaluates the performance of a scheduling scheme for each formed group in collaborative multiple-input multiple-output (MIMO) reception. In previous research, the criterion for UE grouping and the effects of group scheduling has never been presented. In the UE grouping scheme, two criteria, the base station (BS)-oriented one and the UE-oriented one, are presented. The BS-oriented full search scheme achieves ideal performance though it requires knowledge of the relative positions of all UEs. Therefore, the UE-oriented local search scheme is also proposed. As the scheduling scheme, proportional fairness scheduling is used in resource allocation for each formed group. When the number of total UEs increases, the difference in the number of UEs among groups enlarges. Numerical results obtained through computer simulation show that the throughput per user increases and the fairness among users decreases when the number of UEs in a cell increases in the proposed schemes compared to those of the conventional scheme.

  • Power Control Techniques in a Multihop CDMA Packet Radio Network

    Yukitoshi SANADA  Masao NAKAGAWA  

     
    PAPER-Advanced control techniques and channel assignments

      Vol:
    E79-B No:9
      Page(s):
    1287-1294

    In this paper, we have investigated power control techniques for two different routing schemes in a multi-hop Code Division Multiple Access (CDMA) packet radio network. These techniques control the signal power based not only on the transmission distance, but also on the transmission direction. These techniques reduce the amount of interference from the other terminals, and improve the probability of packet success and the expected forward progress per hop. Our results show that the power control techniques increase the expected packet progress towards the final destination per hop by 16% as compared with that of the no power control case. This performance improvement is achieved without increasing system complexity or sacrificing system performance.

  • Throughput Performance of Joint Detection in Non-Orthogonal Multiple Access Schemes

    Takahiro YAZAKI  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/09/05
      Vol:
    E100-B No:2
      Page(s):
    344-353

    Non-orthogonal multiple access (NOMA) makes multiple mobile users share the same frequency band. In a conventional NOMA scheme, a user pair that can be assigned to the same frequency resource is limited, which reduces the amount of capacity improvement possible. This is because a far user demodulates a signal without canceling an underlaid signal for a near user. In addition, semi-orthogonal multiple access (SOMA) modulation has been proposed. This modulation scheme helps to reduce scheduling complexity and demodulation complexity. In this paper, a joint detection scheme is applied to a far user as well as a near user in a NOMA downlink. The joint detection in the far user leads to a more number of user pairs that can be assigned to the same frequency resource through proportional fair scheduling. The total system throughput performance with the joint detection is evaluated with multi-cell system level simulation. Numerical results show that the joint detection in the original NOMA system increases the system throughput more effectively than that with SOMA modulation.

  • Performance of Data Transmission in Wireless Power Transfer with Coil Displacements

    Motoki IIDA  Kazuki SUGENO  Mamiko INAMORI  Yukitoshi SANADA  

     
    LETTER-Communication Theory and Signals

      Vol:
    E97-A No:4
      Page(s):
    1016-1020

    This letter investigates the relationship between antenna position and data communication performance in a magnetic resonance wireless power transfer (MRWPT) system. In MRWPT information such as the types of equipments, the required amount of electrical power, or the timing of power transfer should be exchanged. It is assumed here that power transfer coils in the MRWPT system are employed as antennas for data communication. The frequency characteristics of the antennas change due to coil displacements. The power transfer coils are modeled as a band pass filter (BPF) and the frequency characteristics of the filter are presented in this letter. The characteristics of the filter are derived through circuit simulation and resulting data communication performance is evaluated. Numerical results obtained through computer simulation show that the bit error late (BER) performance can be improved by controlling the center frequency of the communication link.

  • Performance of Overloaded MIMO-OFDM System with Repetition Code

    Hikari MATSUOKA  Yoshihito DOI  Tatsuro YABE  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:12
      Page(s):
    2767-2775

    This paper investigates the performance of an overloaded multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system with a repetition code. It has been demonstrated that diversity with block coding prevents the performance degradation induced by signal multiplexing. However, the computational complexity of a joint decoding scheme increases exponentially with the number of multiplexed signal streams. Thus, this paper proposes the use of a repetition code in the overloaded MIMO-OFDM system. In addition, QR decomposition with M-algorithm (QRM) maximum likelihood decoding (MLD) is applied to the decoding of the repetition code. QRM-MLD significantly reduces the amount of joint decoding complexity. In addition, virtual antennas are employed in order to increase the throughput that is reduced by the repetition code. It is shown that the proposed scheme reduces the complexity by about 1/48 for 6 signal streams with QPSK modulation while the BER degradation is less than 0.1dB at the BER of 10-3.

  • Adjacent Channel Interference Cancellation Scheme for Low-IF Receiver in Multi-Channel Reception

    Anas Muhamad BOSTAMAM  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:6
      Page(s):
    2532-2538

    In this paper a new adjacent channel interference (ACI) cancellation scheme for multi-channel signal reception with low-IF receivers is investigated through the experiment. In the low-IF receivers, the signal in the mirror frequency causes interference to the desired signal. In the proposed analog-digital signal processing scheme, channel selection is made by analog complex band pass filter and the signal is reconstruct by Wiener filter to eliminate the interference effect in order to improve the performance.

61-80hit(82hit)